The Future of the British Army 08 – ISTAR and Formation Reconnaissance (03) A Not So Sensible Future

If we cast our gaze back to the Future Family of Light Armoured Vehicles (FFLAV) study that ultimately spawned TRACER and MRAV it is as relevant today as it was then.

It came to the conclusion that what was needed was a three tier vehicle fleet

As per the previous post, a sensible solution is to make do with what we have and existing plans, that is a combination of ASCOD2, Jackal, Foxhound and a small number of new build CVR(T) but where would be the bloody fun in that!

Roles and Requirements

Form must follow function but form might also dictate function.

In the previous post I listed the roles and responsibilities of formation reconnaissance (the list from Sven) so depending on the formation that is being served, the vehicle and its associated systems, technologies and personnel must match its needs.

Lighter units whose ability to move rapidly may have different needs to others and the secondary roles may take on a greater importance. A light armoured vehicle may be compromised when acting in support of an armoured brigade but might be just the ticket for a light role rapid reaction force.

With FRES SV and Protected Patrol Vehicles like Mastiff we have become increasingly ‘weightier’ and this will inevitably have an impact on operational tempo and agility around the battlespace. If all we think we will be doing is counter insurgency and peace enforcement type operations then this might not be all that bad but losing agility means predictability and that is never a good thing.

The ability to quickly move a light force, equipped with a modest degree of protection/firepower, is still a capability we should strive for and enhance. Whether this is air dropping or more likely by helicopter is to some extent, detail. In the teeth of increasingly competent air defence systems this might seem an anachronism but mobility and agility allow one to advance from unpredictable locations, cut forces off and apply decisive combat power to rear areas for example.

This means that some equipment has to fit in the payload and space envelope of helicopters and aircraft.

The underlying theme is the maintenance of a range of vehicle types/weights that can perform the primary role of reconnaissance and the plethora of secondary ‘light armour’ roles that always seem to be needed more than the former.

Issues – Mobility and Transportability

Accepting the premise that the overwhelming vast majority of fixtures will be away matches the issue of transportability becomes relevant and when engaged on operations, mobility around the battlefield is an obviously important characteristic for any vehicle


Getting to the point of entry is arguably the easiest to tackle and the majority of time it will be via a combination rail, sea, and possibly, air.

Rail; for most vehicles the limitations placed on rail travel are not considerable although the weight of main battle tanks usually requires heavy duty flatbed wagons. Unless operations are to be conducted in Europe rail transportation of vehicles is unlikely, even though the British Army operate rail transportation systems in Germany and Canada with specialists from The Royal Logistic Corps and the Royal Engineers.

Travelling first class

Air; when discussing vehicles most people tend to dismiss air transportability as a secondary consideration, arguing that if a vehicle is going to be operating alongside heavy armoured forces there is very little point in moving them expensively by air where they will sit and wait until the big fellas arrive. There is much common sense in the position but there are certain limited circumstances where deploying by air a modest armoured force can be decisive. Rapid intervention with light forces, reinforced with light/medium armour, can be very effective. The original FRES concept was predicated on moving a medium weight intervention force by air direct to theatre by air. As we all know this was flawed in many aspects not least the amount of aircraft required but there is still some value in the concept and the weight limitations of available aircraft should be considered when designing equipment.

For the UK, those relevant aircraft are the A400, C17 and occasionally chartered Antonov 124’s.

The C17 can lift about 70 tonnes and whilst the UK has never transported Challenger 2 by C17 other nations have done so with their main battle tanks, the capability is proven even if we don’t practice it. It’s not generally recommended though and certainly not a practical exercise for austere locations. Vehicles between 20 and 40 tonnes could be carried comfortably and the UK has transported Warrior vehicles to Afghanistan using C17’s. In pitching a vehicle at the 20-30 tonne level, 2 are transportable per C17 or at a much lighter weight and depending on dimensions; up to 6 may be transported.

The A400 has yet to fully demonstrate a maximum load but the UK requirement is for 30 tonnes and the A400 website lists a maximum of 37 tonnes. Payload inevitably impacts on range and the same website lists a strategically significant range of 2,450nm at 30 tonnes and 3,450nm at 20 tonnes. The ability to move such payloads at range is one of the significant performance features of the A400, even if it will be concrete runway to concrete runway for most of the time.

A vehicle with a weight of 15 tonnes means 2 at a time or 30 tonnes means one in an A400 or 2 in a C17, there are a number of combinations that can be tried.

To fit into an A400 and C17, the width of a vehicle needs to be less than 4m wide and 3.85m high.

Sea; the most common form of getting to theatre will be by sea, at least for any sustained or operation excluding the light role rapid reaction units. Whether by civilian ships, the Point class RORO PFI or amphibious shipping the main limitation is vehicle length and availability of ports and offload facilities. By using RORO ships heavy equipment can be driven straight off a boat and onto waiting road or rail transport for movement to the area of operation.

Using ISO container flatracks to move vehicles removes reliance on RORO vessels or RORO port handling facilities and allows a deployment to take advantage of the global ISO container logistics system, ISO flatracks can utilise widely used lighterage and barge systems to move inshore.

The value of this should not be underestimated.

Standard intermodal flatrack usage would tend to restrain width to 2.3m. Length of a single TEU is about 6m and a weight limit of 30 odd tonnes. Height is also about 2.2m but this is less critical as they can be double stacked.

Road; as with rail, there may be limited circumstances where we can deploy directly to the point of entry via road, renewed conflict in the Balkans for example. Road transportability is also important for training and UK movements, abnormal load regulations are fiendishly complex, click here, but loads (including tractor and flatbed trailer) over 44 tonnes or 2.9m width require special permissions and notifications. Driving to a European theatre is again possible but with obvious limitations. Outside the UK these restrictions might not apply but moving from the port or point of entry via road will be the norm so road and bridge classification and the availability of suitable transport is an issue concern.


In some locations the point of entry might also be the area of operation, Sierra Leone being a good example, but in others the area of operation might be some distance to the point or port of entry. This might also vary depending on the means of transport. If a vehicle is flown direct to Bastion it does not have a long way to get to the area of operation but if the said vehicle goes by a Point class RORO ship that disembarks at Karachi it has a very long and hazardous road move ahead.

Generally speaking, the same options exist except perhaps for rail although it should never be completely discounted.

Air; in a typical hub and spoke operation, strategic aircraft will bring in personnel and supplies (sometimes vehicles) to a strategically located main operating base location and tactical airlift aircraft will bring them forward to smaller airfields, Kandahar to Bastion being a good example, at least until the new runways at Bastion were built. There are a wide variety of scenarios here that might affect vehicle design but with the A400 and C17 being more or less capable of both strategic and tactical airlift operations this hub and spoke arrangement might not always be the best model.

The same issues as above therefore apply.

If we have ambition for air dropping vehicles then weight considerations will be influenced by the capacity of the Medium Stressed Platform successor, likely the Type V from Airlift Technologies, this limit being about 19 tonnes. Making a vehicle compatible with the 463L pallet system would constrain the vehicle to just under 2.4m

Road; there are two options, self deploy or catch a lift. Self deploying significant distance for tracked vehicles is fuel intensive, causes a great deal of track wear and therefore they tend to be carried to the area of operation on a low loader. Wheeled vehicles can self deploy much greater distances although segmented band tracks on light and medium weight vehicles can reduce the impact somewhat.

The UK has a small fleet of 96 Oskosh Heavy Equipment Transporters operated under a 20 year, £290 million PFI with Fasttrax. The original trailer used for transporting heavy vehicles was from King Trailers but given the poor road infrastructure in Afghanistan a number of Broshuisrough terraintrailers have also been obtained to allow the HET fleet to operate.


A lighter vehicle, like CVR(T) can be easily transported on more or less any truck, civilian or army. A simple jib can lift it onto the truck bed and move it long distances, even though CVR(T) can move quite effectively on road. DROPS have also been used quite often for deploying small vehicles including CVR(T), the Balkans especially made use of this method.

Foden DROPS and CVR(T) in the Balkans 01
Foden DROPS and CVR(T) in the Balkans
Leyland DROPS and CVR(T) 01
Leyland DROPS and CVR(T)
Scammel DROPS and CVR(T)
Scammel DROPS and CVR(T)

DROPS and CVR(T) in action

One of the implications of replacing CVR(T), which can move forward under its own steam or on the back of any truck, with the 30 tonne plus ASCOD SV is that road moves forward will not be possible with anything but one of the 96 Heavy Equipment Transporters and specialist trailers. If we are only buying a handful this might not be so bad but given the numbers envisaged, unless we significantly increase the HET and trailer numbers in the PFI then we might have difficulty assembling a sufficiently strong force in reasonable time, this could lead to vulnerabilities as speed of deployment to a forward area is reduced.


Freedom of movement on the battlefield is critical to effectiveness. Although absolute weight is often less important than ground pressure it is still important, especially for bridges and road surfaces.

The NATO standard means of defining the ability of a surface to bear particular weights is called the Military Load Classification (MLC) system and common break points are 30 and 70 tonnes, we use Class 30 and Class 70 trackway for example. If we use heavier vehicles then not only do we deny ourselves freedom of movement, channelled by road and bridge load bearing capacity but we also increase demand for combat engineering support and once the weight goes over 30 tonnes, Class 30 trackwaybecomes too weak and above 35 tonnes the Air Portable Ferry Bridge also disappears from the menu.

Increasing weight has very real mobility consequences.

Other tactical mobility issues include the ability to cross gaps, climb slopes and traverse soft ground at speed. Tractive force is important for obstacle breaching and rapid acceleration can help in many circumstances.

If we set ourselves to helicopter portability the realistic limit for a Chinook sling load is less than 10 tonnes and if anyone listen to my suggestion of moving to the CH53K this can move up to 15 tonnes. Internally transportable vehicles for either the CH53K or Chinook are dimensionally challenging although the German Wiesel manages it for the CH53.

CVR(T) and Chinook - Operation Agricola
CVR(T) and Chinook – Operation Agricola


Other mobility factors include reliability and fuel consumption.

Fuel consumption is particularly important when advancing at speed and rear echelon capacity must be carefully matched to vehicle fuel consumption. This is another possible issue with FRES SV, when compared with CVR(T) total fuel burn will be significantly higher and the tactical fuel supply systems might struggle to keep up.


At this point the tracks v wheels debate hove’s into view and there are a number of factors to consider.

Deployability – Wheeled vehicles can self deploy from the point of entry so do not need transporters, for many scenarios, this is a major advantage

Survivability – Wheels are considered to be more vulnerable to shell fragments and small arms fire than tracks but if survivability includes the ability to move after damage then a wheeled vehicle has the advantage. If we consider manoeuvrability as a means contributor to survivability then tracks have the advantage, vulnerable points can be avoided for example. However, the scope for utilising the additional mobility capabilities afforded by tracks can be limited in some terrain where no amount of ground mobility will make a difference.

Mobility – a wheeled vehicle will generally have a much greater ground pressure than a tracked vehicle of the same weight, ground pressure being a determinant factor in mobility and because tracked drivetrains are lighter than wheeled, to carry the same amount of armour and payload, a tracked vehicle can be lighter, driving down the ground pressure again.

Higher speed on roads is generally easier to achieve with wheeled vehicles.

In difficult off road conditions, tracked vehicles can usually achieve greater speeds. Large vehicles like Mastiff are heavy and no matter how many wheels or centralised tyre pressure management systems are added mobility going to be significantly greater and traction significantly poorer than for a comparable tracked vehicle.

As armour is added to improve protection against direct fire then this issue becomes acute, higher ground pressure and a limit on wheel size means there is a practical ceiling for wheeled armoured vehicles off road mobility even though this is improving.

Artificial obstacles in urban areas such as barricades, walls and cars etc present challenges to wheeled vehicles, not always insurmountable challenges but tracked vehicles, with their greater surface area on the ground, power to weight ratio and traction can more easily overcome these obstacles. The infamous US operation in Mogadishu showed that even old fashioned tracked vehicles like the M113 (driven by the Pakistani Army) could deliver winning effects in an urban environment, pushing through rubble and other obstacles.

In the aftermath of the special forces capture in Basra, Operation Thyme was mounted against the Serious Crimes Unit in Jamiat police station. The outer wall was breached by a Medium Wheeled Tractor of 38 Engineer Regiment and through/over the resultant rubble a number of Warriors from the Staffordshire Regiment entered the compound. The shock delivered by this breach might have been impossible to conduct with a wheeled vehicle, instead of going through a breach a wheeled vehicle might have had to go through the entrance. In the video below the Warriors can be seen entering the compound and pushing other vehicles out of the way.

Large wheeled vehicles are unable to execute changes of direction in close confines easily, requiring a ’23 point turn’ unlike a tracked vehicle, that can turn on the spot. Some modern wheeled combat vehicles can perform an on the spot turn but they are not common. 8×8 wheeled vehicles like the Boxer for example, have a high centre of gravity, meaning high speed turning or evasive manoeuvres can be hazardous. After several accidents, US Stryker’s are now speed limited.

The video below shows a very impressive off road mobility demonstration for an early model LAV. Although the tests involving the removal of wheels have those axles conveniently chained in the up position it is still a striking video.

But in videos below, the extra weight of turrets, additional armour and electronic systems imposed on a similar chassis design, by later models, degrades mobility even in what might be reasonably considered to be only mild off road conditions

And here

It is worth bearing in mind that there are relatively old designs but here is a clip of a Canadian unit in Afghanistan (skip forward to 2 minutes 40 seconds)

Several decades of studies have mostly concluded that the mobility advantages of tracks tend to trump the other advantages of wheels even though the gap has closed with modern wheeled systems.

Low ground pressure is not an automatic ticket to mobility though, many other factors come into play, as shown by the image below

Track development has not remained static either, advances in segmented band tracks from Diehl, Astrum and Soucy are addressing some of the traditional disadvantages of tracks. The vehicle weights at which band tracks are being proven is steadily rising and whilst they are not the automatic choice for all vehicles, up to 20 tonnes now seems to be perfectly feasible.

CV90 with continuous band tracks
CV90 with continuous band tracks

Weapons Platform Suitability – For small calibre weapons such as machine guns and automatic grenade launchers there isn’t any real difference. In the protected mobility role, light automatic weapons are all that is needed. However, when large calibre weapons are fitted the stability and low centre of gravity of tracked vehicles favours them. Large weapons on wheeled vehicles create recoil handling problems from both an accuracy and service life perspective. These problems aren’t insurmountable though, especially with advanced low recoil weapons.

Growth Potential – The ability to up armour, add extra weapons, communications or sensor equipment is now seen as a key requirement for combat vehicles. There is no real difference between wheels and tracks on this but in general, tracked vehicles have more space for a given set of dimensions, because of the simplicity of drive train and transmission for tracked vehicles.

Support – Fuel consumption is an increasing concern, with asymmetric conflicts the need for combat logistics as opposed to logistics becomes a greater demand, absorbing valuable combat power. Every litre of fuel or spare part places a considerable strain on logistics and support arrangements. The larger protected patrol vehicles have increased fuel consumption enormously over previous types. Tracks generally have poorer fuel economy than wheeled vehicles but as soon as difficult terrain is encountered or in stop start activity this is reversed. Run flat tyres are very expensive and the US experience in Iraq with Stryker’s demonstrated that running costs are more expensive for wheeled vehicles than tracks (fuel and tyres).

If operated on hard surfaces for extended periods metal tracks tend to heat up and expand, requiring constant maintenance or running the risk of throwing a track.

The inherent complication of an 8×8 like drive train might need more maintenance than the very simple arrangements of a tracked vehicle, as shown by the diagrams below, but, vibration from tracks causes many problems so whilst the wheeled drivetrain might have more parts and be more complex it isn’t necessarily more maintenance heavy.


The traditional disadvantages of tracks; noise, road damage, low speed and maintenance are being addressed by segmented rubber band tracks and equally, the disadvantages of wheels; mobility and weight are also being tackled.

For an interesting take on a hybrid solution, click here and here

There are no simple answers to this deceptively simple question.

Issues – Weights and Measures

One of the burning issues with vehicle design is to what extent we let aircraft payload factors dictate design.

There are two competing thoughts, keep to aircraft weight limitations and take what protection fits within that envelope or design a vehicle with the desired protection levels and buy aircraft to suit.

As with road and bridge classification there are a number of break points and multiples. The table below shows weight as the deciding factor (volume, floor loading and sling point load considerations are ignored)

Merlin Chinook CH53K A400 C17
5 tonnes 1 2 3 6 12
10 tonnes 1 1 3 6
15 tonnes 1 2 4
20 tonnes 1 3
30 tonnes 1 2
40 tonnes 1
60 tonnes 1

Other considerations are road transportation, landing craft and recovery capacity

Class 30 Trackway Air Portable Ferry Bridge LCVP LCU Road Special ISO Flatrack
40 tonnes NO NO NO YES YES NO
60 tonnes NO NO NO YES YES NO

Stacking ISO flatracks is constrained by weight, a typical flatrack such as those manufactured by Domino can stack 9 high but only with a maximum weight of 24 tonnes, a tare weight approx 4 tonnes. ISO flatrack carriage will constrain vehicle width to just over 2.4m. The A400 has a 4m width cargo hold, the C17, 5.5m, Chinook, 2.3m and CH53K, 2.7m.

Domino ISO Flat Rack and CVR(T)
Domino Flat Rack and CVR(T)

Keeping a vehicle less than 2.4m provides the best combination; it could be carried on an ISO flat rack, the A400, CH53K and 2 abreast in the C17.

A narrow vehicle also allows it to get places out of bounds to larger vehicles

By keeping a vehicle within the constraints of a 20foot ISO container/flatrack we can not only utilise the huge civilian infrastructure used to move them on the ocean but critically, also the intermodal facilities of ports and trucks. The main reason the UK entered into the Points Class PFI was because the international shipping market was consolidating on larger and fewer vessels, particularly pure car pure truck carriers (PCPT), availability of RORO shipping for expeditionary operations was becoming tenuous. Whilst the agreement provides for 6 vessels the flexibility and additional capacity in the civilian container shipping market could be exploited.

The sub 5 tonne weight bracket is basically for quad bikes and vehicles like the Roush LAS100, Supacat ATMP and stripped down Land Rovers.

10 tonnes is the key point for Chinook lift and 3 in a single A400 or 6 in a C17, 2 abreast

If we were to step up from the Chinook to the CH53K the 15 tonne point becomes available, 2 in an A400 and 4 in a c17. Given length issues, 2 in an A400 might be more feasible than 3. There is a constant pressure to improve helicopter lift capacity and the US and others have several studies and exploratory programmes, an evolved Chinook may be the result but ultimately, 15-18 tonnes is the likely end point for heavy vertical lift helicopters after Chinook.

Keeping a vehicle below 20 tonnes allows it to be carried on a C130 or some of the newer C130J class aircraft under development, the Embraer C-390 for example.

Beyond 20 tonnes the A400 only carries in singles and beyond 30 tonnes we start seeing mobility issues; ISO flatrack, DROPS, special load, bridges and trackways for example.

With tunable protection these hard limits can be bent a little. The German Puma, for example, uses a modular armour concept, the base vehicle is designed to be transported in the A400 with additional armour carried in follow on aircraft. It is most unlikely that a vehicle will speed down the aircraft ramp and get stuck in straight away so allowing some time to assemble the armour add-ons is a sensible and pragmatic decision. The US M8 AGS used a scalable armour system and some of the newer Warrior UOR’s have worked on this principle.

The categories below may seem heavily biased to air transportation and when this is compared to actual airlift it might seem ludicrous but if the UK is to maintain its expeditionary capabilities we must carefully tailor equipment to available lift capacity and factors such as bridge classification or surface transportation will also be significant. Modular protection allows air transportability weight limits to be maintained whilst providing for improvements in protection when rapid transportation is not such an issue.

I know I go on a bit about ISO container constraints but if we are at all serious about moving stuff from A to B, the civilian intermodal container ecosystem has much greater capacity than any military logistics system.

With this in mind I think the following is a reasonable weight distribution (assuming we start with weight and not other requirements such as survivability or payload)

Category A; 7.5 tonnes maximum weight, this allows 1 to be sling loaded by a Chinook, 2 from a CH53K and 4 in an A400 or 8 in a C17 (volume permitting). Air droppable, easily carried on civilian trucks or DROPS and able to traverse most if not all bridges and trackway.

Category B; 15 tonnes maximum base weight with the capacity to handle an additional 5 to 7 tonnes, this allows a base configuration to be slung loaded from a CH53K. 2 could be carried in an A400 or if 4 A400’s were used, the combined payload would be 6 vehicles and 6 additional 5 tonne protection kits. A C17 could carry 4 base configuration vehicles or 3 with the protection kits already fitted. Can be carried on standard ISO flatracks, utilise all RE trackway and vehicle bridges and be carried on the back of a standard truck or DROPS. Can also be lifted by the RE Terex AC35 crane and recovered using the SV recovery variant.

Category C; ideally this would be 30 tonnes base configuration with 5 to 10 tonne additional protection kit, 1 to be carried on A400 or 2 per C17. Additional protection kits would be available but this would reduce aerial transportation to C17 only.

However, this might seem too close to Category A and not deliver enough protection whilst still being constrained by the same deployment issues as the heavy equipment it will be supporting. Weight therefore becomes less of an issue because at 30 tonnes plus it is still a special load, borderline for ISO carriage and bridges and at a maximum for A400 carriage.

So for this category I would be inclined to worry less about weight and concentrate on protection and firepower, true to the concept of stand up knock down fighting for information in a high threat environment as per many of our recent discussions.

If you need to get the odd one or two into theatre by air, for whatever reason and however rare, as long as it is below 50-60 tonnes it can be carried by C17.

Issues – Protection and Weight Reduction

The original FRES concept eschewed protection for agility, situational awareness and active protection systems. Active protection systems showed great promise at the time but only recently have they been deployed. It is often assumed that the emergence of RPG’s and IED’s meant that the need for greater protection assumed a higher priority but should this have come as any surprise. In WWII armoured vehicles had spaced armour and even bedsprings to protect against HEAT warheads and if one looks at picture of armoured vehicles in Vietnam the use of slats was widespread. Even more recently, battlefields across Africa and the Middle East confirmed that the RPG and ATGW remained a potent threat. The tackling of mines and IED’s by South African and Rhodesian forces in the seventies and eighties  with the emergence of v shaped hulls and other anti mine/IED design features is also food for thought. Even explosively formed projectile IED’s were encountered in Northern Ireland in the seventies.

Sometimes we seem destined to painfully relearn lessons from other periods or places.

The degree of protection must always be balanced by the risk that it impairs the operation at hand, forcing personnel into armoured citadels insulates them from the surrounding area and may in some situations actually increase the danger levels. That said, there can be no doubt that modern protected vehicles have saved numerous lives.

There seems to be a move towards greater protection and whether this is driven by political expediency, the desire to have bloodless wars or the other factors, protection is a key design driver for any vehicle.

But, protection from what?

There are a wide variety of threats on the battlefield, large IED,s conventional mines, small arms, artillery fragments, large calibre automatic weapons, RPG’s, missiles, kinetic energy tank rounds and many more.

Protection levels against a number of threats are defined in the various STANAG standards (mainly STANAG 4569) and extensive testing can demonstrate proof against these standards. Typically they include explosive weight under wheels and vehicle centreline, direct protection against artillery fragments, small arms and automatic weapons.

With modern materials and innovative design features the old adage that protection always equals weight is not applicable anymore and there has been a huge international research programme to find materials and design features that provide protection and/or improve survivability (not the same thing) using blast chimneys, crew pods, hull shaping, composite armour, exotic metal and ceramic materials like super bainite, fabrics, electric armour, perforated armour, sacrificial components blast attenuating seating. The new Foxhound has demonstrated how old fashioned great design can improve survivability without making it weight more than a Challenger.

Since our last attempt at replacing CVR(T) with TRACER a decade ago, materials technology has moved at a staggering rate. There are a wide variety of innovative approaches to armour and yet FRES Scout will utilise the same armour technology as that has been used for decades.

It might come as a surprise but many of these developments are UK originated.

Developed by Corus, Bodycote, DSTL, QinetiQ and the University of Cambridge, perforated Super Bainite steel armour not only improves ballistic performance it reduces weight, comes in at a fraction of the price of conventional armour steel and provides a sovereign production capability. Flash Bainite makes some very bold claims, stating that it is cheaper, lighter, higher performing and easier to work with than conventional aluminium armour.

DSTL have demonstrated an electric armour that is uses fast acting super capacitors to disrupt shaped charges.

Aluminium encapsulated ceramic tiles from CPS Technologieshave demonstrated an improvement near ceramic tile edges and better protection against kinetic energy rounds.

BAE have developed a shear thickening liquid so called bulletproof custard that is more likely to be used in body armour but may have utility for vehicle armour.

DERA/QinetiQ built the Advanced Composite Armoured Vehicle Platform, the so called plastic tank, which was the world’s first monocoque armoured vehicle chassis that used composites instead of metals for load bearing and protection. Advantages included a 15% reduction in weight, reduced thermal and radar signature, improved protection and resistance to corrosion (especially in salt water)

Good background information here

At 24 tonnes it had frontal protection against 30mm AP and 14.5mm protection elsewhere and the weight could be reduced by using band tracks, a more compact power pack and hydro pneumatic suspension.

It is now in the Tank Museum which is somewhat ironic given that the all new FRES will be a generation behind it in terms of materials technology.

Currently in service with British forces in Afghanistan, the UK manufactured Amsafe Tarian is a lightweight fabric based system designed to protect against RPG’s and either replace or supplement conventional bar or rod anti RPG cages. A few months ago the MoD placed a large follow on order.

Looking further ahead, carbon nanotube materials are showing enormous promise, increasing protection and delivering yet more reductions in weight.

The latest active protection systems like Trophy and Iron Curtain are also capable of providing high degrees of protection against ATGW and RPG’s although they are not without some disadvantages.

Protection is also derived from mobility, effective tactics, situational awareness and good intelligence; we should not forget these simple principles because of experience in Afghanistan and Iraq. I will look in more depth at these issues in a future post on protected mobility vehicles but as this is primarily about reconnaissance and the timescale and requirements are subtlety different. In a typical enduring operation where protected mobility will generally favour the protection aspect fast flowing combined arms operations will take a more balanced look.

Therefore, the protection afforded to a vehicle in each category will be what can be achieved within the space/size envelope and balanced with firepower, sensors, fuel, communications equipment and other payloads like UAV’s or personnel.

In short, we work back from size and weight not forward from protection levels. This may result in protection being just below a specific threat, an armour piercing 7.62mm round for example but instead of compromising on weight/size we should compromise on ether design features.

There are no easy answers here because the demands will ALLWAYS be for more of everything but we should be realistic about likely threats and the ability of technology and good design to improve protection.

In addition to reducing weight by utilising advanced materials and active protection systems there is scope in a number of other areas for additional weight reduction, using plastic optical fibre instead of copper cabling, common bus based electronic distribution systems or segmented rubber band tracks to name but three.

Issues – Power and Propulsion

Modern combat vehicles have an insatiable demand for electrical power to support communications, sensors, ECM, display systems, onboard computing, weapon systems and offboard supply for dismounted personnel. As weights rise the need for more powerful engines is the simple result, more powerful engines weigh more and use more fuel, another penalty of increasing weight.

The massive global research programme in hybrid engine technology has far outpaced that in the military domain and yet again we saw a valiant attempt at introducing this technology with TRACER and some of the early FRES work. TRACER demonstrated the viability of lithium ion battery technology in a 20 tonne vehicle a decade ago and battery technology a decade ago is almost unrecognisable compared to what is available now.

Sumitomo Electric are developing a low temperate molten salt battery that is ten times cheaper than lithium-ion and only this month have announcedthe development of a porous aluminium compound that will allow a battery with the same capacity to be reduced in volume and weight by up to two thirds.

MIT researchers have shown that silicon nanotube anodes can store 10 times as much power than graphite electrodes in lithium ion batteries.

The US company Levant Power have developed a shock absorber that recovers energy to reduce alternator load and improve fuel consumption.

Hybrid engine technology is now commercially viable, even for large vehicles; solutions are available from Rolls Royce and others

British motorsport engineering is second to none and they are also embracing hybrid technologies, OakTecbeing a notable example. It is not just the engine/battery combinations that are being developed either, high speed flywheel systems are being used to supplement acceleration and sustain reduced fuel consumption.

Williams Hybrid Power have also have developed an innovative flywheel system.

Even the humble diesel engine is being subjected to a spot of innovation, Navistar (the manufacturers of the Husky, have teamed up with Ecomotors International to develop an opposed cylinder engine which eliminates the cylinder head and vale train resulting in a much more compact engine that improves fuel consumption.

Cella Energy are working on a hydrogen based artificial fuel that uses micron sized beads but can be introduced into existing technology without modification.

QinetiQ demonstrated some years ago their Hybrid Electric Drive vehicle.

QinetiQ High Mobility Demonstrator (HMD) and Hybrid Electric Drive (HED) vehicles
QinetiQ High Mobility Demonstrator (HMD) and Hybrid Electric Drive (HED) vehicles

The point I am trying to make is that we are awash with innovation, much of it British and yet after millions of Pounds investment in research, our new project uses none of it.

Issues – We Used to Own the Night

The proliferation of night vision equipment is accelerating and Western forces traditional monopoly in ‘owning the night’ is under threat. Technology is not of course, the only aspect of night fighting but any vehicle must pay particular attention to signature reduction and management features.

In high temperatures the surface of armoured vehicles can reach 75 degrees centigrade with obvious performance, habitability, reliability and signature issues. DSTL are currently conducting a research programme to look at peelable coatings to reduce temperature and results have been promising but Saab seems to be the current market leader in signature control and thermal management, or clever cam nets depending on your point of view.

Printable electronic ink is an exciting technology that may also provide adaptive coatings.

Issues – No Man is an Island

A reconnaissance vehicle self evidently must operate within the combined arms battlespace and with the increasing network connectivity afforded by satellite and advanced communication systems it is becoming increasingly complex.

A reconnaissance vehicle might enhance the product from a UAV, supplying contextual information or an additional viewpoint or it might utilise a live video feed from a UAV in order to better carry out its task.

Superb communications facilities are a prerequisite and this might include a modular VHF, HF, UHF and satellite fit.

The German ‘Move-It’ programme has developed a number of concepts for vehicles with integrals unmanned air and ground systems. Using a modified Wiesel 2, which can itself be remotely controlled, the vehicle has a small ‘garage’ at the rear of the vehicle for a Telemax unmanned ground vehicle and a section on the front glacis plate for an Air-Robot quadcopter.

This is an interesting concept that might in some ways compensate for a lack of mobility in the heavier vehicles and enhance the survivability of the lighter ones.

They do not necessarily have to be carried by the operating vehicle but command and control of short range aerial and ground UAV’s is an exciting concept, relevant especially in close and urban terrain.

The ability to dismount and use the vehicles facilities is an important consideration.

Issues – Recce by Facebook

Don’t laugh, I am being serious.

The world and his dog are using geotagged imagery, posting images from mobile telephones onto Twitpic and Facebook and this is only likely to increase. On a traditional battlefield we might exploit in an intelligence context, obtaining street level imagery for example that cannot be obtained by aerial or satellite means. If we don’t already do this then we should be but I suspect it forms part of the intelligence community toolkit.

Not all future conflicts will be carried out in the sticks were the internet is not available, simply look at mobile telephone penetration in Africa or how the Libyan rebels are using Facebook, Twitter, blogs and other social media for trends. In fact, NATO planners have reportedly been taking advantage of social media in target planning.

The difference between mining this information for preparatory information prior to operations or air strikes and using it in real-time is not as distant as you might think.

It is also likely that non conventional or hybrid enemies will use social media as a command and control tool in addition to information operations. We might look on these means in the traditional sense of ‘warfare’ denying the enemy the means to exploit them but we should step back and realise there are many benefits of exploiting our enemies exploitation of the internet and social media and reconnaissance is one of them.

I am not advocating a dismounted reconnaissance team whipping out their laptop and start surfing Facebook but the means of collating geographically relevant and useful data, converting that into useful intelligence and rapidly disseminating it in an easy to use format must be central to the reconnaissance effort.

This snaps into the wider intelligence fusion and dissemination subject we looked at when discussing DABINETT.

After the cancellation of the Soothsayer project the state of Electronic Support Measures is uncertain, most effort recently has been directed to the counter IED effort. It remains a fundamental part of the reconnaissance mix.

In many locations there will be a complex and well utilised electromagnetic spectrum to exploit. Everything from mobile networks to Bluetooth and WiFi to VHF military radios will be in use and likely to be carrying ‘traffic of interest’

Beyond the conventional direct finding and classification of emitters that might be carried out by any number of ground and aerial platforms the short range of WiFi and mobile networks means the collection antenna must be in relatively close contact if aerial collection is not an option. Tapping into physical network transmission cables might also yield useful information.

Asymmetric enemies will seek to use commercial networks so exploiting or denying them to others is no doubt a handy capability to have.

Whether the forward reconnaissance vehicles are used to simply collect and transmit for analysis or collect and analyse would be dependent on technology choices and available bandwidth, plus of course the argument between the Royal Signals and Intelligence Corps!

The demand for high bandwidth communication links is outstripping supply and there is a growing awareness of ‘bandwidth dependency’ because we have not yet faced an enemy with the means to deny parts of the electromagnetic spectrum to us.

Adaptive communication technologies that piggy back on any available bearer (Wimax, Wifi, 3G, GSM etc)  is also a technology that may yet revolutionise military communication, all stuff for another post but I have put it here for completeness.

Issues – Industrial Confidence

Of course the problem with a lot of military projects is that they take a hopelessly over ambitious approach to technology maturity but there are times where it is absolutely right and proper to seek a step change rather than timidly clamouring for everything to be off the shelf.

The reason we have taken the current approach to FRES is because we seem afraid of technological innovation, almost lacking in confidence, made worse by an approaching out of service date for CVR(T) without anything to show for two or three attempts at replacing it.

One of the underlying root causes of this lack of confidence is a basic lack of expertise, since selling off public sector development organisations, failing to invest in research and development and having an incoherent and grossly underfunded approach to defence industrial issues the dwindling UK expertise in defence vehicle engineering is telling.

Given the UK’s world renowned expertise in automotive engineering that has actually provided some benefit to the defence sector recently as a result of a number of initiatives, it might be reasonable to suggest the expertise have simply transferred elsewhere and not entirely gone away.

Despite our lack of military vehicle technology strategies we also still have a number of world leading innovators in transmissions, suspension, engines, tracks, armour, sensors and other areas so all is not lost.

Instead of appointing one of the majors as an apex contractor is it really beyond the capacity of the subject matter experts in DSTL and DE&S to run a design project, once the design has been finalised it can go out to production tender.

Maybe it’s time not only to innovate but have the confidence to do so.

Issues – Other Factors to Consider

Mastiff availability has been as low as 20% and when going from 30 to 35 tonnes, an unmodified Warrior suffers a 40% reduction in mean distance between failure, so although we tend to wonder why so much emphasis is placed on upgradability that inevitably drives up cost and time into service there are good reasons for it.

I tend to think we often look too far into the future but it’s a difficult balance to strike.

Reducing the logistic footprint of any vehicle is also important, commonality of spares and in the field repair techniques being two significant factors. If we look at the Foxhound and its modular load system, this will greatly improve vehicle availability because they can be repaired in the field without recourse to back loading to the UK.

Although the need for a more survivable vehicle, defined by the need to fight for information (as per the previous post) and the greater threats on modern complex battlefields is entirely understandable, this extra weight does not come free.

Whilst we might be able to achieve more with a single modern FRES Scout than with multiple 40 year old CVR(T)’s individual vehicle fuel consumption can have a large impact on operational tempo.

The UK does not have any armoured fuel delivery vehicles so those in the rear echelon will need to expose themselves to hostile fire more often. This will be exacerbated in a fast moving operation where fuel rather than ammunition is the greatest logistic concern.

Thoughts on Design – Category A

Category A was sub 7.5 tonnes, fit on an airdrop pallet, be slingable by Chinook or 2 by a CH53K and narrow enough to fit on an ISO Flat Rack. If we don’t ultimately move to a heavier lift helicopter then it might make more sense to accept a single sling load either way, so 10 tonne it should be (although the maximum payload of Chinook is slightly higher)

In this category, protection is limited by the need for mobility.

We actually have the ideal vehicle in service although not in the main equipment programme, the Supacat Jackal 2 of course. The base vehicle is approximately 7.5 tonnes although additional armour and equipment takes this higher.


An alternative that is in service with special-forces is the Supacat HMT Extenda, similar to the Jackal but with the ability to add on a extra axle assembly called a hamper. The variable height air suspension, key to its excellent mobility, also allows the ride height to be lowered so the vehicle can be carried internally in a Chinook.

Supacat Extenda inside a Chinook
Supacat Extenda, Chinook and a tight squeeze

The extra axle module can be separated to support slinging and fitted quickly once on the ground.

A wide range of sensors and communication equipment can be fitted; the Jackal ISTAR mounts a ROTAS sensor on an elevating mast for example. ROTAS incorporates an advanced ‘Catherine’ thermal imager from Thales, daylight TV camera and laser rangefinder that are linked into a navigation system for precise positional information. Combined with handheld sensors these can be used for cueing offensive support from artillery, attack helicopter or fast air, a potent combination.

Jackal ISTAR
Jackal ISTAR
Jackal ISTAR
Jackal ISTAR
Jackal ISTAR
Jackal ISTAR

Armament options include pintle mounted 7.62mm GPMG, 12.7mm HMG and 40mm GMG and it should be possible to fit a demountable Javelin launcher. If more firepower is needed we might consider one the various Nexter 20mm automatic cannons. These have been fitted to a wide range of vehicles and the ammunition provides a significant uplift in lethality over 12.7mm, this might be a sensible wider replacement for the M2 HMG.

Going up a notch, is the ATK LW25 Bushmaster lightweight 25mm chain gun which has been demonstrated on a Kongsberg Protector remote mount and has a range of different ammunitions natures benefitting from years of US investment. It can also be fitted into the Palletized Autonomous Weapon System (PAWS) for ease of mounting on various vehicles.

Another and perhaps final option for a vehicle of this size is the ATK M230LF 30mm automatic cannon that is a link of variant of the electrically operated M230 weapon used on the Apache attack helicopter (ammunition and many components would be common) mounted in a Nobles Manufacturing Viper Gun Mount.

A remote weapon station could also be fitted for stabilised fire on the move; again the Jackal ISTAR has demonstrated integration with a Kongsberg Protector or a simple ring/pintle mount used instead, like the many we use from Platt Mounts. Some of the Coyote variants of the Jackal have been fitted with remote weapon stations.

A simple short range micro UAV like one of the many quadcopter designs would provide additional capability at modest cost, they do not need to provide imagery reach-back up the chain of command but provide a simple ‘over the hill’ view.

A medium term technology insertion programme should be initiated to enhance the Jackal platform with a hybrid drive system, these are rapidly maturing, extra range, limited silent running and off board power generation are especially useful for reconnaissance vehicles.  Reducing fuel use is also emerging as a core objective across the whole of defence.

A final alternative is the Foxhound which would be desirable from a commonality perspective but the Jackal’s cross country mobility is hard to beat.

Category A therefore, is what we already have, bought into the main equipment programme and enhanced with a handful of minor additions and a medium term technology insertion programme.

Thoughts on Design – Category B

Category B is 15 to 22+ tonnes, less than 2.4m wide and overall dimensions within the envelope of a 20ft ISO container to provide a slingable CH53K (or equivalent post Chinook heavy lift helicopter), 2 or 3 in a C17 and multiples in an A400 package, where each aircraft either carries a vehicle or collection of protection kits and support stores/personnel.

This is clearly a compromise but with a more even balance of mobility (strategic and tactical) and protection but as I mentioned above, the ability to move rapidly around the battlefield, be helicopter liftable, rapidly deployable by air and utilise all manner of civilian transport infrastructure is a fair trade off against other capabilities.

In Monty’s previous posthe described a number of possible vehicle configurations, variations on engine placement, manned and unmanned turrets and tracks or wheels.

It might also be worth looking at a few existing or older designs to compare.

The sixties era M113 based Lynx was an interesting design. Although only Canada and the Netherlands purchased them I think they were pretty advanced for their time. With a crew of three and a weight of less than 9 tonnes, each one was only lightly armed with 3 heavy machine guns but the sensors were top notch, including radar, thermal imaging and image intensification that were also capable of being dismounted and used remotely from the vehicle. Later versions included improved weapons. Smaller than a standard M113 its engine was rear mounted, unlike the standard vehicle, and this provided excellent mobility.

A more modern vehicle is the Panhard Sphinx (Secret Project for High Intensity and New Conflicts), at 17 tonnes it will be equipped with a CMI turret sporting the same 40mm CTA cannon as FRES Scout and planned upgrade to Warrior. The Sphinx has been designed to meet the French AMX10RC replacement project called Engin Blindé de Reconnaissance et de Combat (EBRC). It is a conventional design reminiscent of the Alvis Saladin with the driver positioned centrally between the wheels rather than sitting over them as in a truck derived design, this has obvious IED/Mine protection benefits.

Protection is said to be STANAG 4569 Level V, pretty impressive for a vehicle with a weight of less than 20 tonnes.

Panhard Sphinx
Panhard Sphinx

There is a good image here, illustrating the size difference between it and a conventional wheeled armoured personnel carrier but it still looks too much like a Ferret 80!

Ferret 80 vehicle
Ferret 80 vehicle

The Jordanian King Abdullah Design and Development Bureau has recently purchased all of Belgium’s stock of CVR(T)’s with the intention of upgrading and selling them. KADDB have carved out an impressive niche in applying sensible and effective upgrades to legacy equipment and the Scimitar upgrade is no exception. The upgrade removes the RARDEN and replaces it with a 30mm 2A72 canon equipped with a dual ammunition feed mechanism and host of other improvements.

The Stormer might be a good starting place

Something old and something new, plus of course CVR(T) and an upgrade, all showing how different design choices, constraints and technology can combine to create very different vehicles, all arguably tasked with the same job.

We could always put in a call to these guys!

One design that would seem to fit within the general characteristics of Category B is the old SIKA and LANCER TRACER.

Because of merger activity Bae ended up in both competing consortia (go figure)

SIKA comprised BAe, Lockheed Martin, Vickers Defence and Genera Dynamics

LANCER comprised BAe, Alvis, United Defense and Raytheon.



The resultant Future Mobility Platform looked conventional but was anything but.

The base vehicle was manufactured in the USA and shipped to the UK for fitting of the Alvis turret. The pictures below show the base vehicle and turret mockup.


There aren’t many pictures of the actual turret fitted to the base vehicle about the interwebs but this one seems to be it.


The crew sat in a hull down pod, driver in front and gunner and commander behind and to the sides. Like the recent Puma design, this sacrificed a little situational awareness for smaller dimensions, better protection and improved collaboration between crew. The turreted version mounted the 40mm CTA cannon and a 7.62mm machine gun. The commanders thermal viewer was a direct lift of the M1 MBT but the main sensor was a new design, mounted on a 5m elevating mast that when not in use, allowed the sensor head to be retracted beneath armour. The elevating senor allowed the vehicle to remain in dead ground or behind cover. The hybrid electric drive provided 500kw of lithium ion/diesel engine power that could accelerate the vehicle to just under 50kph in 9 seconds and achieve a top speed of 90kph. When the silent mode was engaged, the battery capacity allowed it to travel 6 to 10km and the total range was 650km. The base protection package resulted in a vehicle weight of 19 tonnes.

An impressive vehicle by any measure

Sula systems helped to develop the overwatch anti tank guided weapon mockup. This could carry four 50kg weapons in an elevating turret and was designed to accommodate a mix of Brimstone and Hellfire II with the option to take a tri mode variant. Integrating with the Apache Attack Helicopter Longbow radar it could team up and provide a non line of sight anti tank overwatch capability.

This is a capability we still don’t have.

The old hull is still here, perhaps we should ask nicely for it back.

So a decade ago, TRACER was demonstrating hybrid electric drive with lithium ion batteries, modular open architecture electronics and command system, an elevating sensor mast, integrated optical, acoustic and radar sensors and rubber band tracks. Low fuel consumption, excellent situational awareness, limited silent running and rapid acceleration were all on offer.

But then the FRES dream came in and messed everything up, TRACER is the ultimate ‘what could have been’

We have to note that many of these technologies, whilst demonstrated, were not mature, but this was 10 years ago.

How have we gone from cutting edge innovation to a warmed over 20 year old design whose greatest claim to fame is that it will use CIDS and have an ambulance variant!

My hair brained scheme for Category B is therefore a new design drawing heavily on the LANCER TRACER and BAe SEP

To get to the base vehicle weight target of 15 tonnes the original 19 tonnes demonstrator would have to go on a diet, is this actually achievable, who knows, but what is certain is that 10 years of materials and automotive science and technology have relentlessly improved performance and driven down weight. Technologies that were a little cutting edge in TRACER are now commonplace and available off the shelf.

The basic configuration would be similar, a single crew compartment protected to a higher level than the rest of the vehicle and a split hybrid electric drive system with segmented band tracks. The choice of engine location towards the rear has some advantages but means the payload space becomes constrained. With compact engines this might not be such a large problem but the now defunct BAe SEP (Spitterskyddad Enhets Platform) mounted the engine at the front, traditional APC style.

At a base weight of only 11.5 tonnes, its combat weight could rise to 17 tonnes with 8 infantry and because of its decoupled suspension and band tracks internal noise was comparable to civilian cars. Protection up to 7kg of TNT under the track came as standard and additional protection kits were available. SEP also had the same modular payload system as the Boxer vehicle and a maximum range of 600km. SEP is a good starting point but because the Category B vehicle does not need to carry 8 personnel in opposing rows, its 2.9m width can be reduced to 2.4m

SEP Vehicle Family
SEP Vehicle Family

The starting point, or base vehicle, is therefore a cross between LANCER TRACER, BAe SEP and Stormer. A rear mounted demountable payload module would allow easier repair and reduced maintenance, it is this modularity that is one of the main strengths of the Boxer and Foxhound. By separating the base vehicle from the payload module design and integration is simpler and hopefully cheaper.

If it is possible to combine all the recent technology advances to pull the weight down to the target figures of 15 tonnes then a modular protection pack might be a feasible means of increasing the inevitable compromise in protection, if this could be kept at about 5-10 tonnes the total vehicle weight would still be transportable in an A400 and C17.

Variants as follows;

Protected Mobility; in addition to 2 crew the protected mobility variant would carry 4 personnel and a remote weapon station with a GPMG or similar. The third crew seat (gunner) would normally remain unfilled although could be used for an extra passenger if needed.

Scout; the scout variant is the main event and equipped with a remote turret, something similar if not identical to the GIAT TOUTATIS that mounts the 40mm CTA in a 1.5 tonne package, details here, here. The turret carries 68 rounds in three natures with an elevation of -10 to +45 degrees.

Behind the turret would be an under armour elevating mast mounted sensor such as the Thales ROTAS on the Jackal ISTAR would supplement the turret mounted sensors. A more robust mast might also be used to mount acoustic, radar and NBC detectors. The ability to utilise the vehicle sensors and communications from off-board should be considered a key capability and a small quadcopter type UAV would enhance sensor coverage and allow the vehicle to stand off potential hazard zones.

Overwatch and Fire Support; this role seems to have been dropped from the new FRES variants but if we are to operate in moderate to high threat environments the lighter weight scout and protected mobility variants that will still need some form of anti armour overwatch. This might be provided by a combination of attack helicopter, fast air and even something like future concepts like the Fireshadow loitering munitions. However, against a competent enemy or in extreme weather these might not be available or effective so organic fire support will be needed. The original overwatch TRACER concept of 4 Hellfire class weapons still has value and this might be supplemented with the Lightweight Modular Missile for variable effects and non line of sight operation.

A more robust elevating mast like that from Falck Schmidt might be used to loft both a sensor payload but also a low recoil automatic weapon. Instead of an elevating mast we might even make use of the innovative articulating boom lift platforms used for work access, these have the advantage of not just going up and down. The ability to elevate a sensor or move it laterally are obvious in an urban environment but combine this with a weapon for plunging fires makes it particularly interesting in this context.

Combat in urban areas will be increasingly challenging as our infantry numbers decrease.

An even more interesting thought for an elevated mast mounted weapon is the Rheinmetall RMK30 recoilless revolver cannon. Firing 30mm ammunition it has been trialled on the Wiesel and even proposed for a mast mounted weapon for submarines.

Electronic Support, in the section above I mentioned the possibility of exploiting civilian satellite, private mobile radio, cellular, Wimax and WiFi networks that will inevitably remain in use during most stages of an operation. Because these networks use relatively low power transmissions and if an airborne platform is not available the best method of intercept is to be in relatively close proximity. This means stealth and the ability to power collection and analysis systems like Roke Resolve. The MoD has purchased a number of portable systems from Roke, based on the Resolve system, under project SEER for electronic surveillance and electronic attack.

Based on the protected mobility version this would support space for two operators and analysis workstations.

Others; if you look at pictures for the original FRES or SEP concepts it seems the designers have let their imaginations run riot with everything from tethered aerostats to ambulances. From a standardisation perspective this of course makes a great deal of sense but in many other ways, there are too many compromises. If we look, for example, at repair and recovery, the small size compromises capacity and capabilities. Would it make sense for the more combat oriented versions to use the common base platform but the secondary roles carried out by another vehicle?

This other vehicle would be Warthog derivatives; load carrying, ambulance and recovery. In split configuration they can still be carried by Chinook and we now have support systems in place. They have a high degree of mobility and good protection but not as well suited to the other roles. In addition to those already in service, a load carrying, command and mortar version should be introduced. Both are available off the shelf although introducing a 120mm mortar or not is subject of a future thread.

STK Bronco Repair Variant
STK Bronco Repair Variant

Operating a mixed vehicle fleet may seem anathema to effective support and logistics but would it be so difficult?

Thoughts on Design – Category C

After spending all our money on son of TRACER the question comes to what might we use to slug it out, fighting for information as  per the experiences of the USA in Iraq that were detailed in our introductory post on this subject.

This is of course where it gets interesting with regards to FRES Scout because at 30 tonnes plus it is neither strategically mobile as a 15 to 20 tonne vehicle would be, or as survivable as a Challenger 2.

In the descriptions above I noted that Category C does not need to be constrained by weight so the simple question is, why not Challenger 2 for this role.

FV4034 Challenger 2 shown with reactive armour plates (these were subsequently removed when one was detonated by an RPG29, injuring to the driver).
FV4034 Challenger 2 shown with reactive armour plates (these were subsequently removed when one was detonated by an RPG29, injuring to the driver).

Equip them with an elevating sensor as above and perhaps a satellite communication fit and jobs a good un.

We are scaling down the number of armoured regiments meaning that a number of hulls will become available for re roling and because of the nature of likely operations we would not need to have that many.

Therefore, cancel the existing FRES Scout


Previously, I suggested an option to retain and develop expertise in the various disciplines of reconnaissance and surveillance might be to form a dedicated Corps or ISTAR (New Name Required cus’ that is crap)

An alternative suggestion is to improve on our already well practiced ability to form and reform ad hoc groupings by creating a simpler organisation structure of building blocks.

We also discussed the merits of carrying out reconnaissance using organic or non organic units, the different reconnaissance needs of varying size formations and implications for equipment.

As the conversation moved back and forth what became pretty clear was a need to have flexibility of approach, appropriate skills and a range of equipment depending on the nature of the operation and the level at which the reconnaissance force was operating.

Whether we simply seek to improve reconnaissance capabilities in existing units, reinforce the existing formation reconnaissance regiments, create a ‘school of ISTAR’ or create a dedicated ISTAR Corps is to some extent irrelevant but it is an interesting discussion that should take place before getting on to equipment choices.

If we accept there is a need for diversity of equipment the question then moves to how best can they be organised.

The more diverse equipment types and roles we inject into a single grouping the more complex its service support becomes and more diffuse its training. Incidentally, this is one of the challenges the Multi Role Brigade faces. Each Brigade will have within it everything from Challenger 2 to quad bikes and everything in between.

Like a number of hair brained schemes put forth in the ‘future of’ series of posts I am not entirely convinced of them myself but use them as anchors to hang the discussion off. The Royal Corps of ISTAR (New Name Required cus’ that is crap) is one those.

There are many alternatives and none of them are right or wrong but for administrative neatness I would propose the ISTAR Corps organised on the basis of independent squadrons and deployable regimental HQ functions that can plug into the larger brigade or divisional formation. It would be rare that an ISTAR squadron/s would be deployed alone but entirely possible.

Organising the ISTAR squadron also presents a few questions, should they be set up as self contained multi-equipment multi-role or dedicated to a particular role and equipped accordingly?

One view would see an ISTAR squadron configured with a light, medium and heavy troop and another would see light, medium and heavy distributed within a single neatly self contained squadron but multiplied by 3.

There are pros and cons for each approach, having multi-role and multi equipped squadrons increases flexibility and ease of rotation in and out of operations but adds a heavier support/service support burden as attached REME and RE units (for example) would have cover the full span of equipment. The jack of all trades approach also inevitably leads to them not deploying as such anyway if the operation at hand does not need that full span of capabilities.

The discussion on this mirrors the discussion on Multi Role Brigades and that one seems to be running and running so there are no easy answers.

Another option might be to accept that a Formation Reconnaissance regiment needs a range of vehicles that it selects prior to deployment. Instead of creating and organising units based on what they drive we create them based on what they do and provide a range of tools that they select as appropriate. As the debate about providing infantry units with an armoury chock full with different weapons moves on, is the same debate applicable to vehicles?

I am actually sympathetic to this concept, it’s the people that make the difference and with the right focus on training would it be impossible for a reconnaissance squadron to go one operation with

In the Heavy Metal post I suggested forming the Armoured Regiments on a square basis, 2 armoured and 2 armoured infantry. The extra Challengers and Challenger Support Variants as proposed, could carry out some of the reconnaissance tasks as currently carried out by CVR(T), in line with the suggestion that formations could provide for their own reconnaissance needs using equipment organic to that formation. One of the reasons I suggested creating a heavier equipped and denser organised armoured regiment was to provide both flexibility and resilience to loss but it also supports the concept of organic reconnaissance where appropriate.

Where additional capability were deemed necessary, they could be detached from the ISTAR Corps and operated in addition to the heavier Challenger based organic reconnaissance.

This is back to the institutionalising the Lego brick modular concept, again, not necessarily right or wrong, just something different to discuss.

Maybe the future is as per the MoD concept

Armoured Vehicle




The Future of the British Army Series…

The Future of the British Army 01 – Scene Setting

The Future of the British Army 02 – Tasks and Capabilities

The Future of the British Army 03 – Rank and Size

The Future of the British Army 04 – Structures

The Future of the British Army 05 – Heavy Metal

The Future of the British Army 06 – ISTAR and Formation Reconnaissance (01)

The Future of the British Army 07 – ISTAR and Formation Reconnaissance (02) A Sensible Future

The Future of the British Army 08 – ISTAR and Formation Reconnaissance (03) A Not So Sensible Future

Supporting Articles

The Need to Rethink FRES

A Brief History of FRES

Medium Armour – what is it, and what does it mean for the post 2020 force structure?


Newest Most Voted
Inline Feedbacks
View all comments
Tony Williams
Tony Williams
July 2, 2011 3:46 am

An interesting survey, as usual, which will take some digesting.

I don’t claim to be an armour expert – merely an interested bystander – but I reacted with puzzlement to the outcome of the FRES SV contest. Why buy something so close in size and configuration to the Warrior, unless the secret subtext was to buy the same vehicle to replace Warrior? Even if that were the case (and especially if it weren’t) is it really impossible to take some of our surplus Warriors (and the way the budget discussions seem to be going, we will soon have a lot of surplus Warriors) and rebuild them to match the ASCOD’s capabilities? Warrior is supposed to be remaining in service until 2030/35, after all.

I also share your puzzlement about the technical timidity of the FRES SV selection. Apart from the electronics (which could presumably be worked into a rebuilt Warrior) no obvious advance at all.

A couple of technical points: I agree that electric hybrid drive has many advantages and is surely mature enough now not to be considered a technical risk. It not only simplifies the transmission of tracked vehicles (no gearbox required, just one motor per track under electronic control), it also provides an even bigger benefit for 8×8 vehicles with a vastly simplified transmission (one motor in each wheel hub, with the engine merely driving a generator and a cable connection to the wheels). That’s as well as the other advantages in freeing up the engine location and providing huge generator capacity for future laser or electromagnetic weapons.

The second technical point concerns opposed-piston diesels – these are scarcely a new idea, look up Junkers Jumo and Napier Deltic.

I am neutral on the tracks v wheels debate – I can see the advantages of both, and the way in which technical developments are also improving both. So I conclude that the “light” recce should be wheeled and the “medium” one probably tracked. I agree that for “heavy” recce it makes sense to use MBTs, as other armies have also concluded in the past.

I like your ideas for a purpose-designed medium recce vehicle, but realistically, even if all went well are we really going to invest in an entirely stand-alone recce vehicle given that the numbers to be acquired will almost certainly be considerably less than planned when ASCOD was selected? This would likely result in an enormous unit cost if the development cost had to be spread over a small number of vehicles.

I suspect that any new AFVs we buy are either going to be part of a family of vehicles (yes, I know, that’s where we started with FRES) or, if only small numbers are required, would simply be bought off-the-shelf from an existing production line. Given that with both FRES decisions going against BAE we are losing AFV design and production capabilities in the UK, we don’t threaten British jobs and skills anymore by buying from abroad.

July 2, 2011 8:51 am

You’ve been scanning the pages of Mike Sparks again TD! Before you know it you’ll start calling the M113 the “Gavin” and by that point it’ll be too late to turn back.

Also, a medal for the Nobles Manufacturing guys. I think that’s the most times I’ve heard someone say the word “Warfighter” in a video of approx. that length.

July 2, 2011 9:38 am

“Fuel consumption is particularly important when advancing at speed and rear echelon capacity must be carefully matched to vehicle fuel consumption.”

Fuel consumption is a logistical concern. Road range / offroad range is a tactical concern.
Range (consumption * fuel capacity) could be much greater than it usually is – several wheeled AFVs reach 1,000 km road range and there’s an old request of WW2 tankers for a 500 km offroad range tank.
Range reduces the frequency of refuelling which may help the log guys more than a reduced consumption. The problem is to get the trucks safely to the AFVs and back, not to add one more truck to the convoy.

July 2, 2011 9:52 am

Excellent piece as always, will comment later.

paul g
July 2, 2011 12:19 pm

Cracking thread, although it also highlights how we’ve missed the boat sooo many times!!! A couple thoughts from me (some sad) with the advance of band tracks would it not be possible to carry a pair on a wheeled vehicle to strap on the back 2 axles (the non steering on a 8×8) a bit like snowchains to tun it into a half track for rough going, being mainly rubber they are lighter and easier (ish) to manhandle. A bit far sighted and inspired by gerry anderson i admit but feasible given the stuff the boffins are churning out today.
With ref to armanants wouldn’t 25mm be better than 30mm as when we get F-35 (no sniggering jenkins)it’ll come witht the gau-22 25mm gatling, therefore we could standardise ammo (possibly changing the gun on apache, which would be good as more rounds carried)this trend could continue as with bushmaster etc and also the lightweight BAe tactical remote turret goes up to 25mm.
Lastly 15-18 tonnes limit for rotor lift; Mil26 line has reopened and 3 new Mil25T2 are near completion, prototype alreay flying western avionics and new more powerful engines take lift weight up to 22000-24000kg eek!! link to photos of assembly line here

paul g
July 2, 2011 12:27 pm

oh and a vid showing new glass cockpit worth watching just to see the test pilot justifying it’s greatness (i think, he’s talking ruskkie) by pointing out it’s toilet!!
be interesting to see the price compared with ch-47f and ch-53k.

July 2, 2011 1:27 pm

An outstanding article! Once again demonstrating why ThinkDefence is one of the best military technology and strategy blogs on the web.

A few points I would like to add to the protection aspect:
First, a minor quibble. Protection always equals weight. It’s true that modern protection systems are more mass efficient than monolithic steel but not as spectacularly as might be suggested.

Second, the Flash Bainite looks interesting, but it’s US hence ITAR protected. Also, the comparison between The wonder metal and aluminium is disingenuous as only compares with AA5083 (one of the first ballistic weldable alloys and consequently more than 50 years old) and AA6061 which is rarely, if ever, used as a ballistic plate. It ignores the much stronger 7000 series alloys which date back to the 1960s and are used on the M113, CVR(T) and Warrior platforms as well as more modern alloys such as AA2519.

Third, there is also the consideration of what your protection scheme actually protects. An AFV is there to fight, but many current designs only protect the crew. This is lighter, but it means that the mission systems are often lightly protected or not protected at all. It makes sense vs casualty-causing IEDs, but less so in a tactical fight.

BAE weren’t offering an AFV production capability in the UK either – It was a Swedish vehicle from Hagglunds. GDUK claims to have created a UK design capability and much of the part manufacture would be outsourced to specialist firms like GKN, MTL, Cook’s etc anyway.

July 2, 2011 5:50 pm

excellent piece admin.

i remain persuaded of the value of a fifteen tonne tankette, but would be happier about its utility if we did indeed have a heavy-lift heli capable of moving it.

July 2, 2011 6:49 pm

Super stuff.

No independent track systems. :(

@ Paul G

Russian helicopter porn is always good to see. :)

Apparently the running cost of Mil26 is a quarter of HC3 Merlin. And you can buy 2 Mil26 for one HC3.

Tony Williams
Tony Williams
July 2, 2011 8:49 pm

@ Paul G

“With ref to armanants wouldn’t 25mm be better than 30mm as when we get F-35 (no sniggering jenkins)it’ll come witht the gau-22 25mm gatling, therefore we could standardise ammo (possibly changing the gun on apache, which would be good as more rounds carried)this trend could continue as with bushmaster etc and also the lightweight BAe tactical remote turret goes up to 25mm.”

The GAU-22/A is integrally mounted only in the F-35/A, the B and C variants can carry an external pod as an option. Which the MoD might or might not buy…

The 25×137 NATO round is a high-velocity item which is actually bigger and heavier than the medium velocity 30x113B in the M230. Similarly, the 25mm M242 cannon in the Stryker and Bradley weighs almost twice as much as the M230 in Apache.

Of course, the Bushmaster II/MK44 gun in the high-velocity 30×173 calibre is a bigger beast than either.

paul g
July 2, 2011 9:18 pm

@tony, good call all round tony (that’s why you’re the ammo guru on here) that’s why i did my RMQ course, i loved range days!! even better when taking them.
@x so with the line up and running and it seems orders coming in from india and china lets piss the US off and buy some and the cougars off the dutch, not bother with the chinooks wouldn’t get ’em til 2014-15 anyway!!! (i know more chance of platting snot)

paul g
July 2, 2011 9:26 pm

just for x!!!!

July 2, 2011 9:44 pm

So much good (and technology) stuff that it makes my head spin!

Just a simple question about “Saab seems to be the current market leader in signature control and thermal management, or clever cam nets depending on your point of view”
– IR camouflage nets are standard issue with every Nordic army (just think of air temperature -20, ground & snow around zero and you fire the first artillery round – like a beacon!)
– is it something newer that you were referring to; specifically on vehicles?

Overall, those absolute break-points: underslung (known), air-liftable (known) but all the others… Should make it so much clearer what the compromises/ trade-off’s actually are

July 2, 2011 9:50 pm

@ Paul G

Thank you! If you read AFM it seems Third World states go off and buy helicopter and use them. We buy a concept and test its prototypes for a decade and then buy lot less than was needed.

M8/M17/M171 costs £6million.The unit cost is low. And if you add on all the safety gear (suspended seats etc.) it doesn’t add much. Its come with a glass cockpit.

If we round it up for the MoD embuggerance factor and call it £10million for 1% (one per cent) of the Army’s budget 15 could be purchased. Enough to move 300 troops. The M8/M17/M171 is tractor tough. Operates in a huge temperature range with out modifications. And works at altitude too. Doesn’t look pretty, but it works…..

July 2, 2011 9:58 pm

Very through piece very gd read. What do we consider the smallest number of armoured recon Vehicles we’d need to deploy in a hurry by air to be affective. Is it a squadron or more than that? If this is then married with our transport fleet of 29 c17 and a400m and over what range to deploy it we should end up with a idea of what the light to medium weight vehicle should weigh. Assuming to at fleet does not grow

Gareth Jones
Gareth Jones
July 2, 2011 10:28 pm

Its a bit of a coincidence that TD mentioned “Liquid” armour, Tarian armour and Swedish IR camouflage; just the other day I was wondering if they could be combined? Does anyone know if the two compounds used are compatible?

Gareth Jones
Gareth Jones
July 2, 2011 11:56 pm

and could we combine with this idea?

July 3, 2011 12:00 am

You can’t combine Tarian and Liquid armour. The way one works would preclude the effectiveness of the other.

Gareth Jones
Gareth Jones
July 3, 2011 1:48 am
Gareth Jones
Gareth Jones
July 3, 2011 1:50 am

@ Mr.fred – Damn. A flaw in a otherwise damn fine plan…

July 3, 2011 2:25 am

Superb article as always sir!

You could almost, I say again, almost comvince me of the 15 tonne FrES SV replacement, especially in context of Chally 2 based heavy recce


I truly believe the “helo-mobility for the sake of tactical flexibily” story line is a highway to where.

Off topic – happy belated Canada Day to all, and just to make you jealous I am sat by the pool in Orlando – Harry Potter World tomorrow (oh joy……..)

July 3, 2011 2:26 am


Camo suits for vehicles have been created already. The Russians have one, Saab Barracuda has one and there are numerous more that are often normal camo nets, tailored to a specific vehicle.

Ghillie suits with smaller structures are ineffective because vehicle camo has to work at longer ranges than sniper camo and thus you need larger structures.

Gareth Jones
Gareth Jones
July 3, 2011 7:43 am

@ SO – Thanks for the info – I shall research further.

July 3, 2011 10:57 am

I didn’t realise this Saab Barracuda thing (for tanks) has been going since 2007:
“Australian Army identified the need to reduce the multispectral signatures and to reduce the solar heat transfer into the vehicles while operating in Australian conditions.

These special camouflage systems are designed to significantly reduce the visual, near-infrared, thermal infrared, and radar signature of the vehicles. The second part of this requirement is achieved using Saab’s Heat Transfer Reduction technologies which are designed to make the internal environment of the vehicle more liveable”

July 3, 2011 10:00 pm

If we are going to get ripped off by GD then we would also have been ripped off by BAESystems because the prices must have been approximately equal.

July 3, 2011 10:04 pm

RE “@PaulG, I like that new and improved MIL26, opens up all sorts of possibilities doesn’t it

@X, because they don’t make them in the South West!!”

A large part of the Russian helicopter industry just tried an IPO @ about 500 mil £ valuation… flopped!
=> let’s go for it, make those machines in the SW, modify design , make it exclusive license

July 3, 2011 10:23 pm

Dont know to much about the russia helos but if we brought them into general UK service they would have to met uk/european air worthiness requirements especially after the nimrod review. this may prove more difficult than one might think.

July 3, 2011 10:32 pm

@ Mark

What issues? Can you tell me/us? Sincere question.

Is it mechanical? Layout?

Are they unsafe? There seems to be a lot of them about.

Would you fly in a new one?

Michael (Civ.)
Michael (Civ.)
July 3, 2011 10:45 pm

Hi, i’ve been wanting to ask this question for sometime.

Is there any advantage to be gained from a half-track type of design, say with drive from both halves, over a purely wheeled vehichle?

July 4, 2011 8:58 am

@ Jed – “I truly believe the “helo-mobility for the sake of tactical flexibily” story line is a highway to where.”

I agree we shouldn’t obsess about it per-se, but it is the many benefits that result from pursuing this capability.

In being heli-portable you get something that is genuinely, smaller, lighter, and less of a logistical hog, thus providing a capability unavailable to ASCOD.

even if we never bought CH53 with its 15 tonne payload I could still see the utility added by a 15 tonne scout/tankette.

July 4, 2011 10:29 am

@ Mike (Civ)

Well half-tracks are easier to steer than full-tracked on the road. And as would suggest off-road you are better than in a truck. But half-tracks don’t have good angles of attack or departure as purely tracked vehicles. Ditch crossing why not poor (if you had diff locks) wouldn’t be as good either. Half-tracks have a greater length to width ratio than tracked vehicles that tend to be squarer. You can pivot steer track vehicles (as some 8×8 wheeled vehicles like the BTRs) but I would suggest that because of transmission binding and the difference in friction between tire and track it would be impossible in half-track.

The Israelis had a fondness for halftracks. They saw subtleties in the wheel/track compromise lost on others; but only for specific roles once M113 became available to them.

I think Mastiff and the other MRAPs would have been better for being half-tracks.

paul g
July 4, 2011 4:08 pm

@mark, reading the various blurbs on the updated mil-26 the new glass cockpit has western type approval, part of the selling hype for india, having said that you tube has several videos of them operating in canada,greece (where it flew over my head quite low) and also germany/switzerland. the last one lifting a huge racing cateraman into lake geneva! so there must some sort of type approval i guess. Antonov has done the same with its heavy lift 124-150 has al the electronic bells and whistles it requires, Another russian aircraft which is reopening it’s production line. A couple of those for moving changes the goalposts a bit! (suppose we could shift some rice around occasionally keep the tree huggers happy)!!

July 4, 2011 4:24 pm

why hug the trees when a thousand marines can hug the waves at 300 mph:

July 4, 2011 5:51 pm

“Ditch crossing why not poor (if you had diff locks) wouldn’t be as good either.”

The Americans usually hold wrong perceptions about half-tracks because the track-ground contact of the M3 half track was ridiculously short and it needed a drum to cross ditches.
German SdKfz 250 and 251 (more complicated but still cheap) half-tracks had much less difficulties with uneven terrain and very soft terrain than the M3 half-track.

Trench crossing is largely a function of vehicle length and grip, and half-tracks are often quite long because they cannot pivot anyway.

July 4, 2011 6:14 pm

@ SO

The key to crossing a ditch is to approach it an angle and not straight on. The first wheel dips into and all being well the wheels falls in for the vehicle to be pushed through the obstacle by the wheel behind and the wheel at the other end of the front axle (diagonally opposed wheels.) What I was “driving” at was is that there is difference in articulation between the front axle and the tracked bogie at the rear. I saw problems with wider ditches where the rear would be stranded meaning the front had a slightly more than difficult climb. Further I was comparing tracked vehicles to half tracks which have better attack and departure angles and as I said tend to be more square. And whose mechanical layout is designed for tracks to be independently driven and controlled. Actually I had forgotten about the drums! I would prefer to cross a ditch than a small raised ridge one meter high and say two meters wide at the base. Climbing up at an angle for the vehicle to fall suddenly away is most disconcerting. Anyway thank you for the small correction I shall be careful not to hammer out quick replies next time.

July 4, 2011 6:20 pm


Ekranoplan porn as well Ruskie helicopter porn in one thread. Eek! It will need an 18 rating soon.

July 4, 2011 8:06 pm


There has certainly been issues with there civil a/c.
As paul suggest there is a certain amount of flight instruments that are required for transiting the much more crowded euro airspace but if there already operating in euro airspace then it shouldnt be a big problem. Dont know what there spares holding training ect is like and how accessible it is in the uk

there will be more safety requirements for carrying passengers. helicopter crash worthiness has some pretty tough limits these days but these then comes down to when the a/c is made. A new design has to meet the latest requirement and older design doesnt have to conform to all the new requirements provided its still in production and just modified (this is when things get very complicated).

I would add russian has/is made a lot of planes/helicopters a lot cheaper than european rivals but most airlines/heli companies that transport people aren’t buying them even the low cost ones, dont know the exact reason why not but interesting none the less.

July 4, 2011 8:32 pm

@ Mark

Thanks. My rather simplistic thinking is that most Russian aircraft seem to be built like tractors so the cabin must have enough rigidity. They must compare to Western designs in that respect at least. Then it must simply be the question of fitting Western “crash proof” seats in to that rigid frame. Though how Western soldiers sitting on the floor of helicopters benefit from those seats I don’t know. It is hardly clunk-click-every-trip when I see footage from Afghanistan! :) I note the US and the UK have both used Mi8/17/171 helicopters in Afghanistan. I can’t imagine those had been modified that much.

As for instruments. Well not all Western helicopters have RADAR. And I suppose fitting a transponder or European radios isn’t that problematic. And I can’t see them going to the trouble of fitting a glass cockpit and not giving some thought to European markets.

I will concede that the majority list of users are all Third World operators. But apparently their are civilian users in the US, NZ, and South Korea.

I don’t know. They seem to be solid machines. They seem to be used all over the Third World in harsh conditions and are probably not being maintained to Western standards. I will have a look to see how many fall from the sky each year. Perhaps they aren’t shiny enough……..

July 4, 2011 8:55 pm

you are right x but its not when there in afghan that is the problem its when flying 12 troops in peace time around london it becomes an issue.

Things like TCAS, gorund proxy, IFF ect are not mandatory everywhere for example but they are here. But yes if there doing the digial cockpit and all then yes there aiming for western markets. Maybe there the skoda of the air world!!

Being rigid and rugged isnt always the best in a heavy crash think of a 1970s car v a 2000 car in a crash test one keeps it shape the other doesnt. CofG height, engine/gearbox entering the cabin, self sealing fuel tanks, auto rotation ect ect are all in the mix now

Rupert Fiennes
Rupert Fiennes
July 4, 2011 9:01 pm

Really good article :-)

Lots of food for thought…..

July 4, 2011 9:29 pm

@ X and Mark

This bunch,, seem to operate all the kit you two are talking about all over the world. Hope the link helps.

July 4, 2011 9:58 pm

@ Andy JS


@ Mark

I know which will come worst off when my 1970s LR hits a 2011 car….. :)

But is TCAS that big of a deal? It can’t be that difficult to fit a system. And self-sealing fuel tanks aren’t exactly cutting edge tech. The M171 is type approved in South Korea and that isn’t a technical backwater. I know cheap sells. But it can’t be that bad of helicopter surely? Then again I suppose it is rather like spending 8k on a car. New Kia or second hand Focus? :)

I don’t know. Some of this Euro stuff smacks of protectionism.

Thanks Mark for putting up with my silly questions.

July 4, 2011 10:07 pm


Pretty much everywhere in the world that’s the ar*se end of nowhere, where the sand storms will rip your underwear off and sand blast your nuts; and where western kit lasts about a week, you will find Mils, antonovs and illushyns working away happily. Now I do not wish to over romanticise this, they are still technically sophisticated machines requiring skilled servicing etc.

But look at the BBC next time they show some disaster relief flights it ain’t boeings C117 or whatever, its Russian Aircraft flying this stuff.

July 4, 2011 10:22 pm


not a problem im not saying there bad or you cant fit this stuff in just saying they’res a different spec that need to be in place over here but its all the add ons that cost, weight power ect. The paper work and supply chain of getting legit spare from russia maybe more difficult. im not saying its impossible its more complicated than might first appear

I would almost guarentee you if you ever see one of these russian craft up close and have a choice of say a an124 or c17 parked the ramp to go for a flight (tents dont care) one look around and you’ll be on the c17 or wait for the next one!!.

July 4, 2011 10:31 pm


A real Hammond Innes/ Alister Mclean type pilot of my acquantance, who actually flew for Air America, and had flown rough planes into rough strips for the worlds governemnts. (Or rather had NOT flown for the world governments at any time ever) if you get my drift. BTW No bar room bullshitter, this was all brought out in court of Law. Had some lovely pictures of unloading guns at Kabul airport drinking coffee with the locals…..

He was always praising Russian kit for that kind of thing, used to say Illushyins were built like bridges, and antonovs made Illushyins look weak. Not sure i would trust Russian maintnence but the aircraft themselves put up with abuse that would destroy most western aircraft.

July 4, 2011 10:38 pm


to late for the edit but for example we cant put cadmium plated bolts in planes any more unless theres stickers everywhere warning people to use special equipment removing them due to H&S ect these type of rules dont apply in russia they have much less red tape.


I would agree with that its the westerns companies drive to get as much weight out as possible and green house emissions down using less fuel ect that has pushed a/c much more to limit of material robustness

July 4, 2011 10:59 pm

@ Mark

Russian aircraft are like Russian ships then? :)

I just think I am bit frustrated with it all. Coming from a mainframe IT background I know testing everything to the n’th degree is important. And I know things aren’t straight forward. But it just doesn’t smell right. If somebody put everything “right” on an M171, used the bolts, fitted the right electronics, fitted the right seats etc. surely even if it doubled the price it would be still less than a Blackhawk. And they can’t be that “wrong” that they require that much modification or the things wouldn’t fly in the first place. Yet they do. As I said in ‘orrid places with the minimum of maintenance. I just wonder how any of these companies make money. (Stopping laugh at the back.)


You legal types get to meet some interesting types don’t you? I suppose that is why the end up in front of the beak either in the star role or as one of the spear carriers.

July 4, 2011 11:25 pm


It was one hell of a case had to fly to Jamaica to inteview ground crew, as 272 Kilo of cocaine dropped out of forward compartment of 707.

The aircraft was such a shed with wings I had the urge to creosote it. Seriosuly every time it landed they had to fill up the oil in one of the engines. They had no flight instrumentation navigated by a hand held gps bluetacked to dashboard, and they hand flew it across the atlantic in that state! A Raf pilot involved in the case stated it was one of the best feats of flying he had ever seen or heard of.

As for us legal types I am also an expert on silage pit construction, and antilock brakes- they just aint so much fun!

July 4, 2011 11:51 pm


But why do I think that 707 would be legal under EU rules while a brand new example of the world’s most built twin engined helicopter and one of Russia’s leading export items wouldn’t be?

July 5, 2011 8:39 pm


It was not Legal when it landed (it was met by 30 customs officers)The CAA in effect bolted it to the runway, and it had to had £20,000 worth of work done before it was allowed to fly out of EU airspace 1 WAY

July 5, 2011 9:06 pm


Amazing. When I hear about things like this it makes me wonder how many other death traps are overhead………

July 6, 2011 12:31 pm

In the descriptions above I noted that Category C does not need to be constrained by weight so the simple question is, why not Challenger 2 for this role. Equip them with an elevating sensor as above and perhaps a satellite communication fit and jobs a good un.

Absolutely. The role here is “you’re out in front of the armour, rolling forward along the axis of advance and finding the enemy by advancing to contact”.
If that was my role, I’d think:
a) that sounds dangerous, I definitely want to be in something with a load of armour and possibly a big gun as well;
b) I don’t need to be in anything light; yes, it’ll allow me to go places that MBTs can’t go, but I’m supposed to be recceing a route for MBTs! If I’m going somewhere where an MBT can’t go, then I’m not doing my job!

Yes, there’s a good argument for having some sort of light and possibly air-portable armour if you want to do fast interventions, etc, or if you want to give your infantry a bit of armoured backup when they’re operating in difficult terrain. Scimitar’s been doing this in Afghanistan.

But I think it is a real mistake to then use that light armour as your armoured Bde advance-to-contact high-intensity conflict recce force as well. These are two different jobs and you need different vehicles for them. The idea that you have light tanks for recce dates back, I would guess, to the days when heavy tanks didn’t have the speed and mobility to do the job. This is no longer the case. MBTs are fast enough and could be equipped well enough with extra sensors to recce for other MBTs.

Mike W
July 6, 2011 10:08 pm


I have come to this rather late, having only just returned from holiday. However, what a brilliant post – amazingly well researched and shot through with imagination of the first order.

However, I do think that you are right in your assertion that the “sensible” approach (one based on a combination of ASCOD2, a number of new-build CVR(T)s (were you thinking of the hybrid Scimitar/Spartan?) and perhaps Foxhound will be the order of the day. I cannot really envisage your inventive blend of Jackal ISTAR, a Lancer/Tracer/SEP/Stormer-type vehicle, Warthog derivatives and Challenger2 ever entering service.

With the limited funding available, I would imagine that what we shall get will be something like the following:

200-250 new ASCOD2 FRES SV vehicles for heavy and medium armoured formations. These will be mainly Scout and Protected Mobility vehicles with a scattering of Command and Repair variants. The Bridgelayer and the Direct Fire versions will almost inevitably go to the wall.

150 new-build CVR(T)-based vehicles for 3 Commando Brigade and 16 Air Assault Brigade. These will be presented as “interim” vehicles to serve until FRES SV is introduced but will (as is the nature of things in the weird and wonderful world of defence) be kept on as recce vehicles for the light formations.

And that will be it really! All the more reason why we should spend all the time we have available lobbying for an increase in defence spending (lobby MPs, Government, the Press, etc. etc.) Things simply cannot go on as they are.

Lord Jim
Lord Jim
July 8, 2011 2:36 am

A problem I see is that the Army will only be able to order one of either FRES SV and FRES UV after all the planned and predicted cuts come into play. Post Afghanistan what will the army decide it really needs and what options will it have. I have a strong feeling that FRES UV with my vote going to the Boxer platform will take priority in order to re-equip the Mechanised Battalions initially and then either convert the Armoured Infantry Battalions or curretn “Light role” battalions in order to flest out the MRBs under FF2020.

A small number of Scimitar/Spartan hybrids may appear to support 16AB and/or 3 Cmdo but no where near the 150 specualted, more like 25-30.

Existing platforms would be tasked with Recce along with UAV etc but the Formation Recce Regiments would be gone. Instead Recce Coys would be integral in other Battalions/Regiments. The Jackel is ideal for 16AB and also 3 Cmdo except in Arctic senarios. I have stated before the Warrior post WCIP would easily fulfil the role currently planned for the ASCOD 2, and would be far far cheaper than the purchase of new vehicles.

Many will disagree but the Army’s priority must be to recapitalise its AFV fleet and replace the FV430 fleet and the multitude of MRAVs purchased under UORs. The Warthogs should stay to allow deployments in difficult areas such as the Arctic and allow a MRB to support 3 Cmdo in these environments.

Could teh Boxer replace the Warrior in Armoured Infantry Regiments. I cannot see why not. some people have a problem in it only being armed with a 50 Cal and/or 40mm AGL and not a 30mm or larger cannon. the former is more than adequate to support its dismounts and that should be its role, not as a light tank. A boxer will still have a major psychological impanct through its size but if deemed really neccessary there is no reason it could not be armed with a RES with a 20mm for example.

I may hav gone off topic but I strongly feel that post Afghanistan the Army’s priorities will move away from FRES SV and thsi programme will be a victim of the cuts and the Army will look for cheaper alternatives and amanding the WCIP to move that platfom into the CVR(T) replacement role would be a logical choice and free up funding for other urgent programmes.

Lord Jim
Lord Jim
July 8, 2011 2:37 am

Sorry for the spelling above, need sleep.

July 8, 2011 8:23 am

Lord Jim,

Good post – I agree that FRES UV has to be the focus (though I doubt it is economical to build 30 new CVR(T)’s, so if it is new build rather than converting existing vehicles then I think it will be significantly more than 30).

According to the ARTEC web-site they can provide a IFV version of the Boxer:

July 8, 2011 8:39 am

Regarding replacing a cannon-armed with a GMG-armed APC, the GMG may be effective against infantry but it will not be effective against hardened positions or light armour. A .50cal would not even be that effective against dismounted infantry. A small cannon would also be less effective both in terms of anti-armour performance and anti-personnel performance.

It does, of course, depend on how you plan to use an IFV. As a part of the armoured battlegroup, it fills in a gap in the capability of the MBT’s weapon set. On it’s own it provides some anti-armour capacity and long-range capability.

Mike W
July 8, 2011 8:43 am

Lord Jim,

You might very well be right. Evidence is emerging that the Army is considering inroducing a Warrior bridgelayer version. Just Google in “Army ponders modifying Warrior vehicle to Bridgelayer” and that will throw up one or two websites that carry this story (including the Defence Market Intelligence one (under European Defence News).

That could possibly mean one of two things. Either the MOD/Army is considering not purchasing the FRES ASCOD bridgelayer variant (and possibly even cancelling the whole ASCOD2 FRES SV programme) OR that it is considering cancelling the TERRIER programme (Remember that a a bridgelayer version of that was mooted). Heaven forbid that the latter prove to be the case. It is the only progrmamme supporting the last major armoured vehicle factory in the UK. Anyway, I thought that that programme had been safeguarded and the vehicle was about to enter production.

Have to agree with Tubby that a new-build programme of only 30 CVR(T) hybrids would be uneconomical and would expect more to be produced.

July 8, 2011 9:19 am

Hi mr.fred,

I think I have reached the limits of Google, as I understood from my internet based reading that our APC’s (the Bulldog) are currently only armed with a GMG? I understood that Lord Jim’s proposal was for Boxer to replace Bulldog and the MRAV’s, plus if need be you can fit the LANCE turret option to the Boxer which comes standard with 30mm cannon and could I guess take the 40mm CTA gun if need be. Adding the LANCE and turning Boxer into IFV comes at the cost of two dismount’s though (as they are now manning the turret). I think its a good strategy, upgrade Warrior, buy Boxer mostly in vanilla APC, with some IFV’s (possibly a 120mm mortar version as well), then build CVR(T)’s.

July 8, 2011 9:31 am


That should have been:
“Replacing a cannon-armed IFV with a GMG armed APC…”
and was in response to Lord Jim’s:
“Could teh Boxer replace the Warrior in Armoured Infantry Regiments.[?]”

July 8, 2011 9:39 am

Hi Mr.fred,

That makes more sense, I am going to assume that Lord Jim did not know about the IFV version of Boxer when he postulated replacing Warrior in Armoured Infantry Regiments – as my skim read of his post was that Warrior would be taking the FRES SV role once upgraded (or it may just have been my over-excitement of someone posting an idea close to what I have been thinking about).

Lord Jim
Lord Jim
July 8, 2011 11:07 am

Why do we have to have MICVs in a Armoured Combat Group? Most future operations will revolve around Battalion sized battlegroups where the MBTs will provide most of the hard fire support, equipped with multipurpose, variable fused ammunition like APAMS to take out hardened position etc and neutralise dung in ifantry and ATGW teams. Recce vehicles would provide the Light armour segment able to both support the MBTs and APCs. The APCs weaponry would be there to support the infantry dismounts providing covering/supressive fire. Fitting anything larger than a 50. Cal or 40mm AGL would lead to the temptation to use them as Light tanks for which they are not well suited. GW overwatch variants of the Recce and/or APC platform would also augment the formation.

We are trying to reduce the weight and footprint of these planned MRBs. Having MICVs, MBTs and an MICV sized RECCE platform leaves too large a foot print and limits in theatre deployment due to the need for large number of heavy transporters which also have to be shipped in. By removing the Armoured Infantry Battalion with its MICVs and instead allocating two Mechanised battalions this would be greatly improved.

Many nations are disposing of their heavy tracked MICVs including France, Belgium. Nations like the Netherlands, Norway are using theirs more and more like light armour and have greatly reduced their inventories. More important the USMC whose Brigade sized formations the MRBs most closely resemble do not even use a MICV, in fact never have. The planned replacement for the AAV7A1 is seemingly more and more unlikely to see service and the AAV7A1 has given stellar service in all theatres despire being only armed with a 50. Cal and 40mm AGL. In fact the main reasoning behind the new platform was not increased firepower but speed from ship to shore to eneable over the horizon landings together with the LCAC and Osprey.

Turning to the platform to support 16AB and 3 Cmdo. The Army will not be able to afford a fleet of 100+ new vehicles to replace the CVR(T)in its present form for this specialised role. It is more likely that a limited run will be produced in house workshops by taking Scimitar and Spartan platforms and refurbishing them to give them another 10 to 15 year life in the form of hybrids such as has already been trialed. Not perfect but a usable filler until a new platform emerges or is affordable.

Regarding the medium AVLB for which a variant of the ASCOD is planned. There is no reason an AVLB variant of the Boxer could not be developed. There are already lorry launch bridging systems in service and the modular nature of the Boxer should aid in this. In fact the modular nature of the Boxer is its greatest selling point over its competitors allowing developement of a family of vehicles far easier.

A rough idea of how I see the MRBs evolving into is below;

Brigade HQ.

1 Armoured Regt with: 3 Sqns of 13 CA2, 1 Recce Sqn of 9 Warrior Recce and 4 Warrior ATGW

2 Mechanised Infantry Btns with: 4 Coys of Infantry each of 3 Infantry plts and a Fire support Plt, and a Recce Coy of 3 Plts of 4 Warrior Recce. An ATGW Plt would be included with 6 Boxer ATGW

The Fire support Plts would include 2 SP Mortars, probably 81mm though 120mm would be better, along with the Coys SF MGs, AGLs etc. The Boxer ATGWs would be deployed as need to support formations.

2 Motorised Infantry Btns organised the same as the Mechanised but with Ocelot variants fulfilling most of the roles. However in reality these final to Btns will remain “Light Role”, with transport etc being provided on an as needed basis from either a pool or from TA equiped units, using a hodge podge of platforms.

Brigade Artillery will be based around a Regt of 105mm Light guns, either in its current form or as a portee variant based again on the Boxer platform. Heavier assets such as MLRS, together with AD platforms being attached as needed and dependant on the overall size of the force deployed. ISTAR and other specialist assets would be both integral to individual Btns and Regts as well as being held at Brigade HQ level.

Wether this formation is fit for purpose remaisn to be seen but as has been noted the current plans for the MRB seem more focused on deployment lengths and effectiveness, so only time will tell

July 8, 2011 11:27 am

Hi Lord Jim,

I think your current post likely includes more finesse and fine details than I can follow. So my rather dim response is the the French are replacing 1,050 tracked AMX-10P (with a 20mm cannon) with 660ish VBCI with a 25mm cannon which is not quite the same logic as you describe. Surely if we copy the French (while using our Warrior’s in the Recce role) we would buy say 300 (as a round number plucked from the air) of our Boxer’s with LANCE turret which we integrate spare 30mm RARDEN cannons taken from either the reduced number of Scimitar or Warrior’s.

I agree that if we are re-furbishing Scimitar by mating the turret on the Spartan hull then we are unlikely to get a huge number though I think it would be more like 60 – 70. But there seems to be mixed messages on the internet with some suggestions that BAE is actually being asked to re-start the production of CVR(T) which suggests a bigger order of 150 – 200 to be viable.

Tony Williams
Tony Williams
July 8, 2011 11:52 am

The Lance turret proposed for the Boxer was the basis for LockMart’s successful bid for the 40mm CTA turret for FRES SV, so that’s already sorted…

July 8, 2011 12:09 pm

Thank’s Tony its a good day when you learn something new, so its looking like a mix of upgraded Warrior, Boxer APC with .50 cal RWS, Boxer IFV with LM’s turret with CTA40, rebuilt or new build CRV(T) is the way to go. The only problem to solve is to see if we can fit CTA40 to the current CRV(T) turret otherwise we have to support 30mm and 40mm CTA in the field – unless its logical on the CRV(T) to re-gun with one or more .50 cal mounted in the turret?

Tony Williams
Tony Williams
July 8, 2011 12:36 pm

For smaller vehicles like the CVR(T) I rather like the .50 / 40mm GMG combo. The .50 gives flat-shooting long-range fire with excellent barrier penetration at low ammo cost, the GMG lobs HE shells out to a similar distance, which also have some anti-armour effectiveness (HEDP being the most common nature).

Furthermore, various airburst systems are now available for GMGs so the shells can be exploded right over the heads of those hiding in ditches or behind walls.

Alan Garner
Alan Garner
July 8, 2011 12:37 pm

Wasn’t Britain part of the initial Boxer joint venture? What would be the sense of pulling out, starting the FRES program, only buying part of the required vehicles, then going back to Boxer? Especially when, as many have said, the army should be looking at rationalising it’s vehicle inventory.

If the MOD has made a definite decision on ASCOD, then shouldn’t the army be trying to base it’s future fleet around just Warrior, ASCOD, Ocelot and their variants?

July 8, 2011 12:44 pm

“he only problem to solve is to see if we can fit CTA40 to the current CRV(T) turret otherwise we have to support 30mm and 40mm CTA in the field”

I would be curious to know the answer to this, though i still feel that stormer would be a better platform choice than CVR(T).

July 8, 2011 12:59 pm

re option “b” and the potential of Stormer 30.

according to this page:

it can be lifted unladen by a chinook, and by a CH53 even when fully laden.
it can be fitted with a variety of turrets, (one with CTA40 perhaps).
it provides frontal arc protection against 14.5mm, as well as mines and fragments.
it can fit within the dimensions of an iso container (if you take the skirts off?).

is the Stormer30 the answer to the question?

July 8, 2011 1:09 pm


For you perhaps that’s the way to go. Might others be permitted to disagree? The problem I see is that RARDEN is practically obsolete and the Scimitar’s fire control is unable to allow fire-on-the-move.

Lord Jim,
Regarding the AAAV7 and it’s (now cancelled) replacement the EFV, the main reason may have been to improve mobility rather than firepower, but they still took the opportunity to upgrade the weapons system from an unstabilised GMG and HMG to a stabilised 30mm cannon and coaxial machine gun.

With the MBTs providing the fire support, you are unable to engage targets outside their arcs with heavy firepower and they cannot engage targets in proximity of friendly forces because they have a large danger area. On top of that, main armament ammunition is limited and cannot be as readily used to suppress potential hostile positions. Medium autocannon can do that, using airbursts out to 2km and beyond. Arguably, you could do the same with modern GMGs but autocannon also have decent KE that can be used with a greater amount of ammunition.

July 8, 2011 1:58 pm

Which question?
I think that Stormer 30 was the answer to “how should we replace CVR(T)”
Now, I think that the question has changed, but even if it hadn’t, I don’t know if the Stormer 30 could be the answer anymore. The Stormer chassis is no longer in production.

July 8, 2011 2:19 pm

“Which question? I think that Stormer 30 was the answer to “how should we replace CVR(T)”

Well yes, that one generally, but isn’t that rather tied up in the less-than-fifteen-tonne option “b” discussed above?

July 8, 2011 2:35 pm

Hi Mr.fred,

“Might others be permitted to disagree?”

Sure, it would be a pretty boring world if we all agreed. I have made it clear I like buying an off the shelf 8×8 design to fill FRES UV, that IMO FRES UV is higher priority than FRES SV and I personally I would like us to procure a IFV version of the FRES UV platform. Others have disagreed and I am sure others will disagree with everything everyone has posted so far. As for the CVR(T) the question I would like answered is has the MoD ordered new builds or just mating a Scimitar turret on a Spartan hull? If new build then presumably MoD will address the obsolescence of the RARDEN and the lack of stabilised mount on the Scimitar turret (am I getting that correct?), along with a host of other issues like installing an engine and transmission currently in production. If it is a rebuild then is there much point give the issues you have raised?

Other than that I am personally trying to suggest ways to avoid have each family of vehicles with a different calibre, so I will admit to throwing out crazy ideas. If they are new building CVR(T)’s then what about Tony’s suggestion of a combo of a .50 cal and 40mm GMG?

Out of interest, are you suggesting that it would be better to concentrate on tracked IFV and APC’s?

July 8, 2011 7:54 pm

There is a substantial difference between a rebuild – what would be called in engineering a “build to print”- and an upgrade where you could do something about the Scimitar’s obsolescence issues.

Adding powered elevation and traverse needed for fire-on-the-move would require substantial redesign of the safety systems and possibly the sights. Enabling the RARDEN to fire modern ammunition would need either re-qualifying the gun or developing our own (the repercussions of choosing a unique calibre – at least RARDEN could be reworked to use a commercially available calibre) Neither option would be cheap.

I am of the opinion that an armoured battlegroup should include organic infantry, IFVs, MBTs and Recce, all with the same capabilities and limitation when it comes to mobility, so I don’t think that a wheeled vehicle would be good there.

Wheeled vehicles like the SV are the backbone of the mechanised infantry. in the Mechanised infantry role, I don’t know what role the IFV would play. Maybe as the organic recce asset?

July 8, 2011 10:47 pm

@ Mr.fred,

Thanks – it will be interesting to see what if anything emerges from BAE’s workshops with regard to CRV(T).

The few examples of wheeled IFV I have looked at have filled the role of tracked IFV in the armoured battlegroup, and I agree that wheeled and tracked do not mix if you expect the same degree of mobility (someone posted a while ago a couple of video’s one showing a LAV on an assault course then a tank – think it was a Leopard -going over the same course, and the LAV was significantly slower) – so I get your point here.

I am expecting due to penny pinching that there will be insufficient funds to fully equip the MRB. FRES SV seems to be rumoured every other week for the chop (and isn’t the warrior upgrade only twice the cost of the demonstration phase of FRES SV?), that we may end up with a medium to light focus in the MRB, and I was envisaging that wheeled IFV would be able to provide additional fire support in the face of low availability of armoured units. This is of course my gut feeling, and I have had to do a fair amount of reading to catch up with everyone else on this subject and I still do not really have a feel for the tactics involved.

Lord Jim
Lord Jim
July 8, 2011 11:39 pm

For the Scimitar/Spartan hybrid I can see it being done as simply as possible so there would be little modification to the turret. If the aim is to improve it to include better sights and stabalisation then it would be easier and probably cheaper to find another turret, possibly second hand. All this is of course dependant on wether the Mod deems it neccessary to pursue this programme at all and wether it is high enough up the funding priority ladder.

One more thing, could the Boxer take the turret form the italian Centauro. I know this goes against what I have been preaching but if we do need a wheeled FSV that maybe an option

Mike W
July 9, 2011 1:11 am


It looks as if FRES SV is going ahead, though, (at least for the moment it does!). “Janes Defence Weekly” (dated 8th July)reports that Thales UK is to provide an electro-optical target-detection system and weapon sights for the new turret of the UK’s Scout Specialist Vehicle (SV).
So procurement of the bits and pieces is still continuing! Not conclusive, I know!

Tony Williams
Tony Williams
July 9, 2011 4:16 am

Mike, funded projects continue until the day they are cut, so no comfort there I’m afraid.

Mike W
July 9, 2011 8:33 am

Tony Williams,

Thanks for the info. I didn’t know that. If that is the policy it seems a bit short-sighted to keep on ordering things right up to the point where the plug is pulled, in that penalty clauses might be invoked. Presumably decisions on such matters will be made within a few weeks from now, so why run the risk of losing money? Still, I suppose that is Government policy for you.

July 9, 2011 9:20 am

Mike W,
If the programme is to be cut then it should be cut. If it is not then it should make all progress it can. Invoking some kind of limbo state where it may or may not be cut will do irreparable damage to the programme if it actually continue.
As such, it makes much more sense to continue as normal until told otherwise. Why run the risk of hobbling your project unnecessarily?

July 9, 2011 12:14 pm

RE “right up to the point where the plug is pulled, in that penalty clauses might be invoked.”
– what would happen if all the layers – and there are so many – would start second guessing
– on the other hand, in the US, they have a two-step “hold” while review goes on and “stop-work” which means all contractual penalties (if any) kicking in. How the suppliers manage the period in between, I don’t know